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The fluid-solid transition of Dzugutov’s potential
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Abstract. We have studied fluid-solid phase transformations of materials interacting via the Dzugutov po-
tential VDz(r) (Phys. Rev. A 46, R2984 (1992)). We present evidence from molecular dynamics simulations
that this interaction does not exhibit a liquid phase. If a mixed potential Vmix(r) is formed by a linear
superposition of VDz(r) and the Lennard-Jones potential VLJ(r), then the liquid phase disappears at a
fraction of less than 60% VLJ(r).

PACS. 61.44.Br Quasicrystals – 61.20.Ja Computer simulation of liquid structure

1 Introduction

It is well known that pair potentials with an attractive
part (for example the Lennard-Jones potential), exhibit
three different phases in the neighborhood of a triple
point: a solid, a liquid, and a vapor phase. The temper-
ature interval where the liquid phase exists (between the
triple point and the critical point) depends on the range
of the potential interaction: the shorter the range of the
potential the smaller the domain will be. It is even pos-
sible that there is no liquid state if the potential is too
short ranged. Such a behavior has recently been confirmed
by analytical calculations [1–3] and by computer simu-
lations [4–6] for hard spheres with additional attractive
square-well [1,2,5], attractive Yukawa potentials [4,6], in-
verse power [1], and double Yukawa interactions [3]. In
all the models the liquid phase disappears if the potential
range is too short.

A common feature of the potentials treated in these
papers is a repulsive core and an attractive well. The
Dzugutov potential considered here is different, since it
has a maximum between nearest and second nearest neigh-
bors in addition to the minimum for nearest neighbors.
Thus the potential loosely resembles the effective pair po-
tentials used for metal interactions, but with the Friedel
oscillations cut off after the first oscillation.

The Dzugutov potential [7] has recently gained interest
in colloid science. By varying charges and polymer coat-
ings of the colloid spheres it is possible to model a wide
range of potential types. Since Dzugutov [8] discovered
that his potential yields a stable quasicrystal it seems to
be feasible to produce macroscopic quasicrystals experi-
mentally. But before such an attempt is carried out one
would like to gather as much insight as possible into the
phase diagram of the Dzugutov potential.
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Further impetus to compute the phase diagram comes
from our studies of quasicrystals. We have used the
Dzugutov potential to simulate diffusion behavior [9–11]
by molecular dynamics. Dzugutov has kept the volume
constant in his cooling simulations. Thus he always got
condensed phases. We have applied constant pressure in-
stead of constant volume. In this case the system behaves
completely different: it may not form a condensed phase
at all if the pressure is too low.

The purpose of this paper is to present the melting and
condensation behavior of the Dzugutov potential in some
detail. A study of the solid phase is presented in a sepa-
rate paper [12]. First the potential, the simulation setup,
and the method to determine the phase boundaries are
described (Sect. 2). Then the heating and expansion sim-
ulations are presented. The results indicate rather clearly
that a liquid phase does not exist (Sect. 3). More evidence
for the absence of the liquid phase is provided by a super-
position of the Lennard-Jones potential and the Dzugutov
potential (Sect. 4). The Lennard-Jones potential is chosen
since its phase diagram is well known and a liquid phase
exists. Furthermore, the Dzugutov potential has been de-
rived from the Lennard-Jones potential. The simulations
show that the liquid phase disappears if the contribution
of the Lennard-Jones potential to the mixed potential is
less than 60%. The paper is completed by a discussion and
the conclusions in the final section (Sect. 5).

2 Models and methods

A new potential

Dzugutov recently has proposed a new simple pair po-
tential which can be used to study glass transitions in a
monoatomic system (see Fig. 1). The potential is given by
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Fig. 1. Mixed Lennard-Jones–Dzugutov potentials V (r) =
xVLJ(r) + (1− x)VDz(r).

the following equations:

V = V1 + V2

V1 = A(r−m −B) exp
(

c

r − a

)
, r < a,

V1 = 0, r ≥ a,

V2 = B exp
(

d

r − b

)
, r < b,

V2 = 0, r ≥ b.

The parameters are:

m A c a B d b
16 5.82 1.1 1.87 1.28 0.27 1.94

The repulsive core of the potential is the same as the short-
range part of the Lennard-Jones potential down to the
minimum, although this may not be obvious from the def-
inition of the potential. To prevent the atoms from freez-
ing into a densely packed crystal structure, Dzugutov then
introduced a maximum at a distance of about

√
2 × rnn,

where rnn is the nearest neighbor distance. The results
obtained were different from what Dzugutov originally ex-
pected [8]: The structure did not crystallize in the molec-
ular dynamics cooling simulations, but transformed after
a very long annealing time of several million time steps
into a quasicrystalline structure with layered dodecagonal
symmetry.

Principles for determining phase transitions

To determine phase boundaries between two thermody-
namic phases precisely one has to compute free energies.
This is a quite elaborate task if done by computer simula-
tions. Since I was not interested in the thermodynamic
properties of the phases in detail, I started with solid
samples and heated them at constant pressure until they
melted. The transition temperatures were determined by
looking for discontinuities in the potential energy, volume,
and mean-square displacements.

It is well known that such a procedure does not yield
the true thermodynamic phase transition line but a line
where the solid becomes mechanically unstable as a whole.
There are at least two reasons for this behavior: first, if
periodic boundary conditions are applied, surface melt-
ing is suppressed. The system cannot melt continuously
and forms a two-phase equilibrium state. Second, since the
system is rather small, it cannot develop two competing
phases due to the prohibitively high interface energy. Thus
the melting transition is delayed. An equivalent retarda-
tion of the phase transition takes place if a liquid is cooled:
a critical nucleus must be formed, and even large-scale re-
ordering might be necessary. Altogether this implies that
a hysteresis loop is observed, and the “real” phase transi-
tion takes place at a temperature somewhere within that
loop.

Instead of varying the temperature at constant pres-
sure one could also change the pressure at constant tem-
perature. If a liquid is compressed in this way the for-
mation of a solid is delayed, and if a solid is expanded
at sufficiently high temperatures the melting is retarded.
Again a hysteresis loop is observed instead of a two-phase
domain.

At this place some terms may be defined: throughout
this paper “liquid” denotes an ordinary condensed liquid
if a corresponding “vapor” exists. The mobile phase of the
Dzugutov potential is called a “fluid”.

The solid structures

The first step in the study of a melting or freezing transi-
tion is to find plausible solid structures. From Dzugutov’s
work [8] it was already known that square-triangle phases
should be stable. The generalized structures of this type
are formed by assembling squares, triangles, rhombi or
shields (Figs. 2 and 3) at random, but without gaps or
overlaps. A comparison of different classes of these struc-
tures, namely ideal or random dodecagonal quasicrystals,
low-order approximants, and crystalline A15, Z, H, and σ-
phases (Fig. 4), showed that the σ-phase is the lowest in
energy at T = 0 and P = 0. A search for other solid struc-
tures turned out that the crystalline bcc and fcc phases
are also competitive at certain pressures [12]. Therefore
the σ-phase, fcc and bcc were studied in the simulations.

The σ-phase samples contained 60, 480, and 7500
atoms. The numbers in the bcc crystals amounted to 54,
250 or 1024 atoms, and the fcc crystals used as the starting
structures for the simulations with Lennard-Jones poten-
tials had 108 or 500 atoms in the box.

The simulation method

The simulations were carried out with the classical
molecular dynamics method. For isothermal (NVT) and
isothermal-isobaric (NPT) simulations the constraint
method was used [15]. The equations of motion were in-
tegrated with a fourth-order Gear-predictor-corrector al-
gorithm (see, for example [15]). The time increment was
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Fig. 2. A dodecagonal random tiling with squares, triangles,
rhombi and shields. The different marks indicate the height
of the atoms along the periodic z-direction. One z-period is
approximately as long as the edge of a tile.

Fig. 3. The basic tiles. From left to right: square, triangle,
rhombus and shield. The triangle also occurs in a configuration
where the white and black atoms are interchanged. These are
all known stable tiles. The marks are the same as in Figure 2.

H(complex)Z (Al3Zr4)A15 (β-W) σ (β-U)

Fig. 4. The vertex configurations which contain only squares
and triangles. The patterns also characterize the four crys-
talline phases noted below the vertex pictures.

δt∗ = 0.00051 for all the simulations. The heating and
cooling and the compression and expansion simulations
were all carried out with constant temperature or pressure
gradients, respectively. Constant density and volume gra-
dients were also applied, but such simulations turned out
to be rather problematic to carry out. The temperature
and pressure gradients will be given with the presentation
of the results. The simulation box was cubic, if permitted
by the crystal structure, or orthorhombic otherwise, but
only isotropic volume changes were permitted. Periodic

1 All results will be given in reduced units [15] and are
marked by *. The unit of energy ε is the minimum of the
Lennard-Jones potential.
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Fig. 5. Phase transition of the σ-phase with the Dzugutov
potential. The potential energy is plotted for a heating simula-
tion. The pressure is P ∗ = 0.01, and the temperature gradient
δT ∗ = 0.002 per time step.

boundary conditions were applied throughout the simula-
tions.

3 Determination of the transition line

In this section the simulation procedures carried out to
compute the pressure-temperature phase diagram of the
pure Dzugutov potential are described. The transition
lines have been determined by heating and cooling at con-
stant temperature and by compressing and expanding at
constant pressure.

Heating simulations

Consider an ordinary Lennard-Jones crystal which is
heated at low constant pressure. The potential energy
at the melting point will jump from about −4 to about
−2. At the boiling transition the energy jumps again to
about 0. The behavior of the Dzugutov potential is com-
pletely different: at the only observable phase transition
the potential energy jumps from about −1.4 to −0.2 (see
Fig. 5). The volume explodes by an order of magnitude.
This clearly indicates that a sublimation transition takes
place instead of melting. It is the first hint that there is
no liquid phase, at least at low pressures. The question
remains if a triple point exists, and if the applied pressure
was below the triple point pressure.

To find out if the transition behavior changes with in-
creasing pressure the phase boundary for the Dzugutov
potential has been traced from T ∗ = 0 to 6 at constant
pressures between P ∗ = 0 to 100. The temperature has
been increased linearly at a gradient of δT ∗ = 0.001 or
0.002 per time step. The bulk of the simulations has been
carried out starting from the bcc phase. Further runs have
been conducted with the σ-phase and fcc crystals. The
transition lines for different structures are rather similar
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Fig. 6. Potential energy surface vs. temperature and pressure.
The dotted line indicates a path in a constant-volume simula-
tion starting at the equilibrium volume, the long dashed line
marks the onset of the phase transition and the short dashed
line its termination. The upper plateau is the potential energy
of the fluid phase, the lower surface the potential energy of the
solid.

in the low pressure range. But at increasing pressure the
σ-phase becomes unstable. At even higher pressures the
bcc crystals vaporize at lower temperatures compared to
the fcc crystals. This indicates that fcc becomes the stable
phase at high pressures. Since it is known that fcc is the
ground state at high pressures close to T = 0 [12] it seems
reasonable to assume that fcc is the stable structure for
any temperature in this pressure domain. A clear jump of
the potential energy and a jump in the volume and den-
sity, respectively, occur in the whole range of pressures if
the transition line is crossed (see Fig. 6). There is no indi-
cation of a two-stage transition first to a liquid and then
to a vapor phase at any pressure within the range studied.

To permit a comparison of my results to Dzugutov’s
work I have determined the transition points of the
bcc-, fcc- and σ-phase in constant-volume heating simula-
tions (Fig. 7). The starting samples were equilibrated at
T ∗ = 0.001 and P ∗ = 0.001. During the heating the pres-
sure increases continuously and a jump occurs when the
heating path crosses the transition line determined with
constant-pressure simulations. At first sight the system be-
haves rather unexpectedly at the transition as the pressure
jumps to a value above the constant-volume transition line.
In the thermodynamic limit one would expect that only a
sharp bend in the pressure-temperature path occurs. The
reason for the jump is that the onset of the phase tran-
sition is delayed stronger than its termination. The end
points of the phase transitions at different volumes yield
a new transition line in addition to the constant-pressure
transition line. This second line reduces the width of the
hysteresis region since it lies at lower temperatures com-
pared to the constant-pressure transition line.
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Fig. 7. Schematic pressure-temperature phase diagram. The
full line indicates the phase transition obtained by heating and
expansion, the dashed line marks the transitions observed by
cooling and compression. Between the two lines is the hysteresis
region. The phases obtained by cooling are given in capital
letters.

Compression and expansion at constant temperature

Up to now the transition line has been traced by heating
a solid until it melts or vaporizes. A liquid phase could
have been missed if its potential energy difference or the
volume change is small. But there exists a second possi-
bility to find the transition line: if a fluid is compressed
or a solid is expanded the behavior of the system can be
traced in a direction orthogonal to the heating and cool-
ing paths. Again discontinuities are expected to occur if a
phase boundary is crossed.

The starting point for these simulations are low-
density fluids obtained from previous heating simulations
at low pressure. The fluid is compressed continuously at
constant temperature. No discontinuity or change in the
slope of the density vs. pressure function P ∗(ρ) is observed
until a collapse to the solid takes place. Figure 8 shows
P ∗(ρ) for temperatures between T ∗ = 0.6 and 4.0. If a
liquid phase were present it should modify P ∗(ρ) even if
it were hidden due to metastability or if it could not be
accessed directly due to hysteresis effects. The structure
of the solid phase created from the fluid by compression
at constant temperature is always the bcc-phase in the
temperature range between T ∗ = 0.6 and 4.0. The signif-
icance of this result is not that the bcc structure is the
stable state in this region of the phase diagram, but only
that it is the easiest accessible phase.

Afterwards the solidified structures were expanded
again by reducing the pressure at constant temperature.
A hysteresis loop similar to the one obtained in the heat-
ing and cooling simulations at constant pressure is ob-
served. The transition line where the solid breaks apart is
approximately the same as the line obtained by heating
simulations. Again no hint of a liquid state is found. The
only phase transition observed is the vaporization of the
solid. Two separate transitions which could be interpreted
as melting and boiling at constant pressure do not occur.
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per time step.

Cooling simulations

Now the fluids obtained by heating and vaporizing the
solids are equilibrated at high temperatures. If the fluids
are cooled subsequently at a rate of δT ∗ = 0.002 per time
step an ordered solid is retained. A more detailed discus-
sion of these simulations may be found in reference [12].
If the pressure is larger than P ∗ = 5 and the size of the
sample is small the bcc phase is generated at any cooling
rate. But if the size is increased or the pressure is lowered
the cooling rate has to be reduced accordingly to get the
bcc phase. For 500 atoms δT ∗ is reduced to 0.0005 and
further down to 0.00025 for 1024 atoms. At higher cool-
ing rates an amorphous structure is generated. It is rather
surprising that the bcc phase is obtained in the compres-
sion and cooling simulations, since the fcc phase seems to
be the most stable solid phase at high pressures. A pos-
sible explanation has been given already: the bcc crystals
may not be the stable structure but only the phase which
can readily nucleate. The phase transition to the solid is
delayed again due to hysteresis effects. It is approximately
the same line as the one observed in the expansion sim-
ulations. If the pressure is smaller than about P ∗ = 5,
tetrahedrally close packed (tcp) phases [14] are found.
The samples contain Frank-Kasper polyhedra as nearest-
neighbor coordination shells similar to the quasicrystals
obtained by Dzugutov. The square-triangle quasicrystals
are actually a special case of perfect Frank-Kasper phases.
It is not clear if Dzugutov’s structure is only one case of
an ensemble of structures, and more general Frank-Kasper
phases could be produced by cooling or if the dodecagonal
square-triangle quasicrystals are singled out by stability in
this region of the phase diagram. In this pressure range the
transition to the solid is not well defined. Very low cool-
ing rates and many cooling runs would be necessary to pin
down the transition.

The pressure ranges above and below P ∗ = 5 can
be translated into corresponding density ranges. In the
constant-volume cooling the tcp phase is formed below
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Fig. 9. Comparison of the pressure-temperature phase dia-
gram for the Lennard-Jones potential and for the Dzugutov
potential. The Lennard-Jones transition lines are from refer-
ence [16].

ρ = 0.87 for the samples with 250 atoms. The limiting
density grows up to ρ = 0.84 for the 1024 atom sam-
ples. The cooling rate has to be lowered again for larger
samples.

Comparison to Lennard-Jones

How do these results compare to the phase diagram of
the Lennard-Jones potential? The heating and expansion
phase transition line of the Dzugutov potential can be
nicely mapped onto the melting line of the Lennard-Jones
system by an appropriate scaling of temperature and pres-
sure by the same factor 0.7 (Fig. 9). Due to the hystere-
sis effects this is not a clean action, but a modified scal-
ing factor should similarly map the true transition line of
the Dzugutov potential onto the Lennard-Jones melting
line. The mapping property restricts the domain of the
pressure-temperature phase diagram where a liquid can
be expected for the Dzugutov potential. This region has
been investigated thoroughly with our simulations and no
trace of a liquid has been found.

4 Mixed potentials

It has been mentioned already that the repulsive part
of the Dzugutov potential has been derived from the
Lennard-Jones potential. Therefore the forces between
nearest-neighbor atoms are identical if the atoms are close
enough. The potential energy, however is different, since
the Dzugutov potential is shifted with respect to the
Lennard-Jones potential (Fig. 1). Phase transitions should
occur at slightly different temperatures, since the rela-
tionship between the potential energy and the kinetic en-
ergy is altered. The pressure-temperature phase diagram
of the Lennard-Jones potential is well known, especially
the range where the liquid exists. In the previous sec-
tion I have determined for the Dzugutov the transition
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line where the solid becomes unstable. Furthermore it has
been pointed out that the melting line of the Lennard-
Jones potential and the sublimation line of the Dzugutov
potential are rather similar (see Fig. 9). It is therefore
natural to search for a connection between the two po-
tentials and their phase diagrams. It would be especially
helpful if one could observe a gradual disappearance of
the liquid phase. This goal has been achieved by a linear
superposition of both potentials. At the two end points of
parameter space are the pure Dzugutov potential and the
pure Lennard-Jones potential with their phase diagrams.
If the contribution of the Dzugutov potential is reduced
and the Lennard-Jones part is increased, the maximum of
the potential gradually vanishes and the potential range
increases. The liquid domain of the Lennard-Jones po-
tential should move to other temperatures or pressures,
shrink or otherwise change its shape.

Results for the mixed potentials

A one-parameter sequence of potentials has been gener-
ated by a linear superposition of the Dzugutov and the
Lennard-Jones potentials: V (r) = xVLJ(r)+(1−x)VDz(r).
If the fraction x is 0 the pure Dzugutov potential is re-
tained, and at x = 1 the ordinary Lennard-Jones potential
is present.

The first step to studying the mixed potentials, is to
test the reaction of the stable structures with the pure
Dzugutov potential [12] and the pure Lennard-Jones po-
tential. These are bcc, fcc and the σ-phase. As an addi-
tional example of a square-triangle phase the A15-phase
has been studied. For the Lennard-Jones potential the
ground state at T = 0 is hcp, but fcc is only marginally
less stable. For simplicity, the fcc structure has been used.

At T = 0 and P = 0 the Helmholtz free energy F , the
Gibbs free energy G, the internal energy U , the enthalpy
H, and the potential energy Epot become identical. There-
fore it is adequate to use the potential energy as a measure
of the stability of the different phases. For numerical rea-
sons temperatures and pressures can not be set to zero
exactly, thus the simulations were carried out at very low
temperatures and pressures. A comparison of the poten-
tial energies for the mixed potentials at T ∗ = 0.001 and
P ∗ = 0.001 shows that the most stable solid structure is
the bcc phase for x < 0.3 and the fcc phase for x > 0.3
(Fig. 10). The A15-phase is similar to the σ-phase, but
both are less stable than bcc and fcc for any x.

If the temperature is larger than zero, the entropy and
the kinetic energy start to play a role in the stability. The
kinetic energy, however, is the same for all x at a cer-
tain temperature, thus its contribution can be neglected.
Since the free energy has not been calculated explicitly,
it is not clear how the stability of bcc and fcc changes at
higher temperatures. The potential energy may be used as
a rough guideline if it is assumed that the contribution of
the entropy to both phases is similar. The fraction x where
the potential energies of bcc and fcc are equal, shifts from
x = 0.3 at T = 0 to x = 0.4 at the phase transition
temperature. With the previous assumptions this implies
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that the stability at x = 0.35, for example, changes from
fcc to bcc with increasing temperature. The difference in
potential energies between bcc and the σ phase is small,
but the bcc phase is always lower than the σ-phase for
all x. The difference increases if the potential is more like
Lennard-Jones (Fig. 11). If the σ-phase is used as a start-
ing structure for a heating simulation it is observed that it
becomes unstable at about T ∗ = 0.5 to 0.58 if x is larger
than about 0.4 (see Fig. 12). Sometimes the solid melts
and sometimes it transforms into the stable fcc structure.

Heating simulations

The second step comprises heating simulations at different
x and P ∗ values. Figure 13 shows the potential energy
curves for the σ-phase at different x and low pressure.
For x = 0 only one transition occurs. A two-step phase
transition sets in at x = 0.5 and is clearly visible for x =
0.7 and x = 0.8. For x = 1 no two-step transition can be
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observed.

found since the σ-phase is unstable and decays already at
T ∗ = 0.58.

Now the transition behavior at fixed pressure is pre-
sented as a function of x. At P ∗ = 0.01 and x between 0
(Dzugutov) and 0.4 a transition from the solid to a low-
density fluid (Fig. 14) is observed. The transition is only
weakly dependent on the applied pressure up to P ∗ = 0.1,
but shifts to higher T ∗ if P ∗ is increased to P ∗ = 1.0 and
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bottom to top: instability line of σ-phase, melting line of fcc
phase, boiling lines at P ∗ = 0.01 and 0.1. The topology of the
intersections in the center of the plot cannot be derived from
the simulations.

further to P ∗ = 10.0. The dependence of the transition
line on x is weak but increases for higher pressures. The
phase diagram is similar to the Dzugutov case at x = 0:
only one fluid phase is present. On the contrary a transi-
tion from the solid to the liquid and further to the vapor is
observed at x = 1 (Lennard-Jones). If x is reduced from 1
to 0.4, the melting temperature decreases weakly but the
boiling temperature falls rapidly. At about x = 0.4 both
lines meet and the liquid disappears. Since the sublima-
tion line remains at constant temperature if x is increased
from 0 to 0.4 it meets the other melting and boiling lines
at about x = 0.4 (Fig. 14). For large x the boiling transi-
tion line depends more strongly on the applied pressure.
The line shifts to higher temperatures even if P ∗ is still
in the range between P ∗ = 0.1 and 0.01. At larger pres-
sures (for example P ∗ = 1.0 and 10.0) the system is above
the critical temperature of the Lennard-Jones system for
x = 1 (Fig. 9), and the liquid phase of the Lennard-Jones
potential disappears. The same happens for x between 0.4
and 1.0. Since no liquid phase existed for x between 0.0
and 0.4 a common sublimation line ranging from x = 0 to
1 is obtained. This line shifts gradually to higher temper-
atures if the pressure is increased further (Fig. 14).

It is also illustrative to consider what happens with
the transition lines in the pressure-temperature phase di-
agram if x is varied. The solid-vapor transition line below
the triple point does not change much in the whole range
between x = 0 and x = 1. The solid-liquid and the solid-
fluid transition lines shift to slightly smaller temperatures.
The liquid-vapor transition line, however, changes consid-
erably: if x is lowered from 1 to 0.4 it shifts towards the
solid-liquid transition line and finally vanishes at x about
0.4 (see Fig. 15). This is the most conclusive test that
there is no stable liquid phase for the Dzugutov potential.
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Fig. 15. Pressure-temperature phase diagram. Full lines: boil-
ing transition lines of the mixed potentials. From left to right:
x = 0.6, 0.7,0.8, 0.9 1.0. The temperatures have been scaled
with the melting temperatures to simplify the diagram; oth-
erwise the melting lines would move to lower temperatures
for smaller x as can been seen by comparison with Figure 14.
Dashed lines: transition lines of the pure Lennard-Jones poten-
tial from reference [16].

This behavior is the same as that occurring for the other
potentials studied so far [1–6].

Compression simulations

In a final study low density fluids were compressed at a
constant temperature T ∗ = 1.0. In the Lennard-Jones
case (x = 1.0) two phase transitions are observed since
the starting point is below the boiling temperature (see
Fig. 15): first the collapse of the vapor to a liquid occurs
and then the solidification of the liquid sets in. On the con-
trary only a single transition is present in the Dzugutov
case (x = 0.0). The collapse from the vapor to the fluid is
shown in Figure 16 for a compression rate of δP ∗ = 0.001
per time step. The solidification which occurs at about
P ∗ = 20 is not shown. The different behavior for x = 0.0
and x = 1.0 is obvious. For x = 0.8 the jump in density
from the vapor to the liquid is already smeared out con-
siderably, and lower compression rates would be necessary
to resolve the transition clearly. This trend worsens for
lower x. The compression at constant temperature there-
fore confirms the phase diagram (Fig. 14) derived from
the heating simulations: there is no liquid phase for low x.

Density vs. temperature

If the phase boundaries of the vapor-liquid transition are
plotted as a function of temperature and density and with
the potential mixing ratio x as a parameter (Fig. 17) the
gradual disappearance of the distinction between vapor
and liquid with decreasing x can be seen directly. At x =
0.6 and x = 0.5 the coexistence region has become so
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Fig. 16. Pressure vs. density for mixed potentials with 0 <
x < 1. The vapor is compressed at a rate of δP ∗ = 0.001 per
time step. From left to right: x = 0.0, 0.4, 0.6, 0.8, 1.0. The
vapor-liquid transition is visible for x = 1.0 as a horizontal
jump. It is smeared out for x = 0.8, and vanishes gradually as
x is reduced down to x = 0.0.
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Fig. 17. Temperature vs. density for mixed potentials with
0 < x < 1. The crosses and pluses indicate the vapor-liquid
transition. The boxes and stars mark the boundary of the fluid-
solid (fcc) transition. At x = 0.6 and x = 0.5 the coexistence
region has become so narrow that it is not visible any more.

narrow that variation of the transition at different runs is
larger than the width of the liquid region. For a specific
run, however, the two-step transition vapor-liquid-solid is
still observable.

5 Discussion and conclusion

The results presented in this paper indicate that a liq-
uid phase is not present in the phase diagram of the pure
Dzugutov potential. If the Dzugutov potential is superim-
posed linearly with the Lennard-Jones potential a liquid
phase is observed until the fraction of the Dzugutov poten-
tial x becomes smaller than x = 0.4. The liquid phase of
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the Lennard-Jones potential does not shift to higher tem-
peratures or other pressures if x is lowered from 1 to 0.4,
but shrinks continuously, and finally vanishes completely
at x = 0.4 (Fig. 14).

The results fit well into the overall scheme of phase
diagrams without a liquid phase. The attractive well of
the Dzugutov potential is at a distance of about r = 1.3
and the potential range is r = 1.94, so the interaction
is rather short ranged. The potentials obtained by super-
imposing the Lennard-Jones and the Dzugutov potential
may have a second, very shallow minimum which does
not influence the phase diagram since it is at least an or-
der of magnitude less attractive than the first minimum.
But what really plays a rôle is the maximum at about
r = 1.6. To surmount this obstacle the temperature of the
atoms has to be rather high. In the Lennard-Jones case
the bonds between the atoms get continuously weaker if
their kinetic energy increases with raising the tempera-
ture. An atom becomes unbound if its kinetic energy is
high enough to overcome the binding energy. At this point,
the large kinetic energy with respect to infinity and the
interaction is still attractive, therefore a liquid is formed.
In the Dzugutov case an atom has to gain much more
kinetic energy to become unbound since the difference be-
tween the minimum and maximum energy determines the
attraction. But if an atom finally is free it has a large ki-
netic energy with respect to infinity, and the interaction
is now purely repulsive. The atoms will therefore collide
with high energy and separate again immediately. The re-
sult is a vapor phase instead of a liquid. With increasing
Lennard-Jones contribution the maximum of the potential
gets flatter. The kinetic energy necessary to break an atom
out of the crystal lattice becomes smaller and the surplus
kinetic energy reduces also. If the maximum is low enough,
the existence of a liquid phase becomes possible.

Now the case of continuous cooling or compression of
a vapor is considered. Atoms interacting via a Lennard-
Jones potential will get closer and closer with falling tem-
perature since there exists no repulsive barrier between
the atoms. Finally a liquid or an amorphous phase will
form at any pressure above the triple point if the tem-
perature has become low enough. Thus it is easy to form
a condensed phase. Atoms interacting via the Dzugutov
potential will repel each other if cooled, starting from a
high temperature – low pressure state. From time to time
two atoms get trapped by each other if they lose their ki-
netic energy in the right moment of a collision, but most
often the atoms will collide and separate again. Therefore
we need high pressure and low cooling rates to produce
a condensed phase. Otherwise a low-temperature vapor
phase which resembles a foam will be formed.

A further explanation of the phase diagram is obtained
by looking at the potential itself and relating it to the
binding energy. The potential has been constructed in
such a way that the energy barrier (difference between
minimum and maximum) is about 1 for all x. If we in-
crease x from 0 to 1 we find that the minimum decreases
from −0.58 to −1.00. The binding energy at temperatures
below the melting point increases proportionally to the

potential minimum. The melting temperature does not
change much between x = 0 and 1. The melting there-
fore occurs after the binding energy has changed by the
same amount for all x and the mean atomic displacement
is about the same. Thus the Lindemann criterion is ful-
filled. The drop of the binding energy remains constant if
x decreases from 1 to 0.4. This behavior can be explained
if the low temperature liquid has a similar structure for
these mixed parameters which can be demonstrated by
computing the radial distribution functions.

Since the jump of the binding energy at the boiling
line reduces only slightly with decreasing x, but the total
binding energy decreases also (as explained above), we find
that the difference between the binding energies of the low
and the high temperature liquid becomes rapidly smaller
with decreasing x. If a liquid would exist at x less than
0.4 then the jump at the boiling temperature would have
to be less than one energy unit!

Finally, at x = 0 we cannot expect the existence of a
liquid phase since the potential is very short ranged and
only nearest neighbors contribute to the binding energy.
In addition we have a maximum which leads to a repulsion
of the atoms. Both properties separately would already be
enough to avoid a liquid phase.

In this study I have gathered evidence that the
Dzugutov potential belongs to the class of short-ranged
potentials without a liquid phase. The ongoing discussion
of the C60 phase diagram [13], however, makes it clear that
it is nontrivial to distinguish a stable liquid phase from a
metastable fluid. In the case of C60, different simulation
methods and density function calculation yield qualita-
tively different phase diagrams. Since I have not deter-
mined the phase boundaries exactly (I used small systems
which may exhibit large finite size effects and did not cal-
culate the free energies), I cannot exclude completely that
a small liquid range may exist in the hysteresis region be-
tween melting and sublimation. But the sharp jumps of
potential energy and specific volume observed, if one goes
from the fluid to the solid phase, seem to exclude this
possibility. Density functional calculations carried out by
Denton [17] have confirmed that the liquid state is indeed
only metastable.

A comparison of the stability of plausible candidate
structures for the solid state [12] has shown that the phase
diagram of the Dzugutov potential may not be as simple as
one could expect from related potentials (Lennard-Jones
for example). There are at least three (meta-)stable struc-
tures at temperatures close to T = 0. With increasing
pressure they are: bcc, the σ-phase and fcc. On the other
hand it could not be proven up to now that the dodecago-
nal quasicrystal discovered by Dzugutov represents a
stable state of his potential at higher temperatures. For
the colloids this implies that it is still difficult, if not
impossible, to create a macroscopic quasicrystal. The
Dzugutov potential may be a starting point, but it has
to be modified if a stable quasicrystal is to be produced.
The absence of the liquid phase is not so important in
this case since by increasing the pressure a dense fluid of
arbitrary density can be formed.
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